
Future Generation Computer Systems 21 (2005) 417–437

Computing on large-scale distributed systems: XtremWeb
architecture, programming models, security,

tests and convergence with grid

Franck Cappelloa,∗, Samir Djilalia, Gilles Fedaka, Thomas Heraulta,
Frédéric Magniettea, Vincent Nérib, Oleg Lodygenskyc

a INRIA, LRI, Université de Paris Sud, Orsay, France
b LRI, Université de Paris Sud, Orsay, France
c LAL, Université de Paris Sud, Orsay, France

Abstract

Global Computing systems belong to the class of large-scale distributed systems. Their properties high computational, stor-
age and communication performance potentials, high resilience make them attractive in academia and industry as computing
infrastructures in complement to more classical infrastructures such as clusters or supercomputers. However, generalizing
the use of these systems in a multi-user and multi-parallel programming context involves finding solutions and providing
mechanisms for many issues such as programming bag of tasks and message passing parallel applications, securing the ap-
plication, the system itself and the computing nodes, deploying the systems for harnessing resources managed in different
ways. In this paper, we present our research, often influenced by user demands, towards a Computational peer-to-peer system
called XtremWeb. We describe (a) the architecture of the system and its motivations, (b) the parallel programming paradigms
available in XtremWeb and how they are implemented, (c) the deployment issues and what mechanisms are used to harness
simultaneously uncoordinated set of resources, and resources managed by batch schedulers and (d) the security issue and how
we address, inside XtremWeb, the protection of the computing resources. We present two multi-parametric applications to
be used in production: Aires belonging to the high energy physics (HEP) Auger project and a protein conformation predictor
using a molecular dynamic simulator. To evaluate the performance and volatility tolerance, we present experiment results
for bag of tasks applications and message passing applications. We show that the system can tolerate massive failure and we
discuss the performance of the node protection mechanism. Based on the XtremWeb project developments and evolutions,
we will discuss the convergence between Global Computing systems and Grid.
© 2004 Published by Elsevier B.V.

Keywords: XtremWeb; Large-scale distributed systems; Global Computing systems

1. Introduction

In September 1999, preliminary versions of
Seti@home were running on some of the PhD stu-

∗ Corresponding author.
E-mail address: franck.cappello@lni.fr (F. Cappello).

dent PCs at LRI (Computer Science Laboratory of
Paris South University). For a team developing re-
search on high-performance computing (HPC), tra-
ditionally using vector supercomputers or cluster of
multi-processors, the architecture of Seti@home and
its applicability to a large number of applications
and users (not only contributors but also clients of

0167-739X/$ – see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.future.2004.04.011



418 F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437

the system) were questionable. All members of our
team were more than skeptic on the usefulness of
this approach, called Global Computing (GC). More-
over, the Grid was emerging as a promising idea,
born as a result of profound reasons and pushed by
top level research teams. However, the skepticism
about GC and the alternative that it could represent
to Grid were at the origin of the XtremWeb project:
understanding its limitations and providing solutions
to overcome some of them were really exciting re-
search challenges. In this paper we will present the
research conducted during these 4 years of work.
Even though we do not explicitly mention them, user
demands have significantly influenced the research in
XtremWeb. Participant PC security, message passing
using standard libraries and deployment techniques
have all been derived partly from user suggestions.
The system architecture itself has evolved from a
monolithic organization to a layered one, in re-
sponse to the diversity of actual and potential usage
contexts.

1.1. Large-scale distributed systems

What makes a fundamental difference between pio-
neer GC systems such as Seti@home, Distributed.net
and other early systems dedicated to RSA key crack-
ing and former works on distributed systems is the
large scale of these systems. The notion of large scale
is linked to a set of behaviors that has to be taken
into account if the system should scale to a high num-
ber of nodes. An example is the node volatility: a non
predictable number of nodes may leave the system
at any time. Some researches even consider that they
may quit the system without any prior mention and
re-connect the system in the same way. This behavior
raises many novel issues: under such assumptions, the
system could be considered as fully asynchronous (it
is impossible to provide bounds on message transits,
thus impossible to detect some process failures), so as
it is well known[23] no consensus could be achieved
on such a system. Another example of behavior is the
complete lack of control of nodes and network. We
cannot decide when a node contributes to the system
nor how. This means that we have to deal with the in
place infrastructure in terms of performance, hetero-
geneity and dynamicity but also that any node may
intermittently inject Byzantine faults.

1.2. Global Computing systems

GC systems have emerged while the HPC commu-
nity was considering clustering and hierarchical de-
signs as good performance-cost trade-offs. They es-
sentially extend the notion of cycle stealing beyond the
frontier of administration domains. The very first pa-
per discussing cycle stealing[50] presented the Worm
programs and several key ideas that are investigated
currently in autonomous computing (self replication,
migration, distributed coordination, etc.). It is interest-
ing to notice that this paper has been partially inspired
by a classic science fiction film called The Blob. Due
to its high attractiveness, cycle stealing has been stud-
ied in many research projects like Condor[33], Glunix
[26] and Mosix[8] to cite a few. A first approach to
cross administration domains was proposed by Web
computing projects such as Jet[37], Charlotte [9],
Javeline[15], Bayanihan[44], SuperWeb[4], ParaWeb
[13] and PopCorn[35]. These projects have emerged
with Java taking benefit of the virtual machine prop-
erties: high portability across heterogeneous hardware
and operating systems, large diffusion of virtual ma-
chine in Web browsers and a strong security model
associated with bytecode execution. Performance and
functionality limitations are some of the fundamental
motivations of the recent generation of GC systems
like COSM[2], BOINC [6] and XtremWeb[21].

The high-performance potential of GC platforms
has also raised a significant interest in the industry.
Companies like Entropia, United Devices, Platform,
Grid Systems and Datasynapse propose GC middle-
ware often known as Desktop Grid or PC Grid sys-
tems. Performance demanding users are also interested
by these platforms, considering their cost-performance
ratio which is even lower than the one of clusters.
Thus, several Desktop Grid platforms are daily used
in production in large companies in the domains of
pharmacology, petroleum, aerospace, etc.

GC systems share with Grid a common objective:
extend the size and accessibility of a computing in-
frastructure beyond the limit of a single administration
domain. In Ref.[24], the authors present the similar-
ities and differences between Grid and Global Com-
puting systems. Two important distinguishing param-
eters are the user community (professional or not) and
the resource ownership (who own the resources and
who is using them). From the system architecture per-



F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437 419

spective, we can consider for the rest of the paper two
main differences: the system scale and the lack of con-
trol of the participating resources. These two aspects
have many consequences at least on the architecture
of system components, the deployment methods, pro-
gramming models, security (trust) and more generally
on the theoretical properties achievable by the system.

A multi-users/multi-applications GC system
would be in principle close to a peer-to-peer (P2P)
file-sharing system such as Napster[20], Kazaa and
Gnutella [45], except that the ultimate shared re-
source is the CPU instead of files. The scale and lack
of control are common behaviors of the two kinds
of systems. Thus, it is likely that similar solutions
will be adopted for their fundamental mechanisms
such as lower level communication protocols, re-
source publishing, resource discovery and distributed
coordination.

The rest of this paper is structured as follows. The
next section presents XtremWeb GC system architec-
ture and implementation issues.Section 3discusses
programming interfaces for GC systems and presents
results of some experiments including execution of
RPC and MPI applications using XtremWeb. Security
issue and how participating nodes security is resolved
for XtremWeb are discussed inSection 4. Some exper-
imental results obtained on a testbed gathering hun-
dreds PCs over three sites are discussed inSection 5.
The last section (Section 6) discusses lessons learned
from XtremWeb in the perspective of convergence be-
tween GC and Grid.

2. XtremWeb

The aim of the XtremWeb project is to investigate
how a large-scale distributed system (LSDS) can be
turned into a parallel computer with classical user,
administration and programming interfaces possibly
using fully decentralized mechanisms to implement
some system functionalities. XtremWeb belongs to the
more general context of Grid research and follows the
standardization effort towards Grid Services[25].

We present XtremWeb-V1 in this section. This ver-
sion is designed for supporting constraints imposed
by LSDS like volatility, heterogeneity and security. It
profits from a modular architecture based on services
for more facilities in implementation and deployment.

XtremWeb, as a multi-users, multi-applications,
GC project for research and production, aiming at
executing external applications on participant re-
sources, must not only provide solutions for clas-
sical LSDS issues (volatility, heterogeneity) but
also complies to parallel application programming
which must stay reasonable in complexity for the
programmer.

Another important issue is the security. This issue
is particularly difficult in the context of LSDS because
it is impossible to trust hundreds of thousands re-
sources. A first problem concerns the protection of the
participating nodes. No aggressive application should
be able to corrupt neither data nor system of any re-
source. This is particularly tight if binary applications
are to be executed. A second problem linked to the
lack of trust is the need for some result certifications
procedure. Since there is no way to control precisely
what happens on a participating resource, faulty and
malicious behaviors must be detected.Section 4.1dis-
cusses participant security.

2.1. Services

Nowadays, Grid Computing is considering the no-
tion of services[25], a wide spread paradigm to stan-
dardize components in distributed systems. A service
is an entity that must be auto-descriptive, dynami-
cally published, creatable and destructible, remotely
invoked and manageable (including life time cycle).
The standardization effort also includes the use of
well defined standards (WSDL, SOAP, UDDI, etc.)
of Web Services[1]. A typical GC platform gathering
client nodes submitting task requests to a coordina-
tor which schedules them on a set of participating
workers can be implemented in term of services: the
coordinator service publishes application services and
schedules their instantiations on workers; the client
service requests task (association of application and
parameters) executions corresponding to published
application services and collects results from the co-
ordinator service; the worker service computes tasks
and sends their results back to the coordinator ser-
vice. Note that the implementation of the coordinator
service can rely on sub-services such as a scheduler,
a data server for parameters and results, a service
repository/factory which themselves may be imple-
mented in centralized or distributed way.



420 F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437

2.2. XtremWeb architecture

XtremWeb follows the general vision of a LSDS
turning a set of non-specific resources (possibly
volatile) into a runtime environment executing ser-
vices (application modules, runtime modules or in-
frastructure modules) and providing volatility man-
agement.

Fig. 1 presents the layers of this general architec-
ture. This architecture considers four main layers rep-
resenting a total of seven sub-layers. The role of the
first layer is to aggregate non-specific resources (clus-
ters, home PCs, PCs in LAN, etc.) for building a full,
but even unstable (with a possibly volatile nodes) clus-
ter. The second layer turns the non stable cluster into
a virtual stable cluster eventually exposing to the up-
per layer fewer resources than actually available be-
cause of volatility management (some resources may
be kept as spare ones). The third layer creates a generic
GC platform. The fourth layer deploys runtime en-

Fig. 1. A general software stack for LSDS including fault man-
agement.

vironments modules for parallel computing such as
Master-Worker or MPI environments. Applications are
supposed to be executed on top of the last layer.

The actual architecture encompasses more sub-
layers. The role of the bottom most sub-layer (0) is to
enable the deployment of the minimal piece of code
called “Launcher” in XtremWeb or a peer in P2P
environments such as Jxta in different kinds of PCs
platforms (clusters, Internet, Intranet).Section 2.3.1
presents details about this layer. Sub-layer (1) en-
capsulates communication infrastructures allowing
the communication between “launcher” or peers.
Sub-layer (2) gathers infrastructure services enabling
the publishing of services, service discovery, service
construction, etc. Sub-layer (3) encapsulates services
and specific runtimes dedicated to fault tolerance ac-
cordingly to (a) the expected final GC platform type
and (b) the deployment type. Replication, message
logging and fault detection services as well as coor-
dination of fault tolerance services for implementing
fault tolerance protocols are located in this layer. The
next sub-layer (4) contains high-level services such
as request servers, schedulers, task repositories, result
servers, workers (a service working as a runtime envi-
ronment for a binary or Java applications inside a PC),
clients (a service enabling a user or an application to
submit requests to the system). Parallel computing API
and runtimes fit in the sub-layer (6). Typically the inte-
gration of programming environment with fault toler-
ance properties would add fault management services
and runtime into sub-layer (3), API and execution
runtime (launching, termination) into sub-layer (5).

The XtremWeb GC platform implements a subset of
this architecture. As a GC platform, XtremWeb allows
a set of clients to submit task requests to the system
which will execute them onworkers. The XtremWeb
GC design follows a set of three main principles: (1) a
three-tier coordination architecture connectingclient
to workers through a Coordination service, (2) a set of
security mechanisms based on autonomic decisions,
(3) a fault tolerance design allowing the mobility of
clients, the volatility ofworkers and failure of the Co-
ordination service.

The three-tier architecture adds a middle tier be-
tweenclient andworker nodes. Thus there is no direct
P2P task submission/result transfer betweenclients
andworkers. The role of the third tier, called the co-
ordinator, is (a) to de-coupleclients from workers and



F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437 421

(b) to coordinate tasks execution onworkers. Theco-
ordinator accepts task requests coming from several
clients, distributes the tasks to theworkers according to
a scheduling policy, transfers application code towork-
ers if necessary, supervises task execution onwork-
ers, detectsworker crash/disconnection, re-launches
crashed tasks on any other availableworker, collects
and stores task results, delivers task results toclient
upon request. Thecoordinator is not necessarily im-
plemented by a centralized (even replicated) node but
can rely on distributed services deployed on partici-
pating nodes along with other services such asclients
andworkers.

2.3. Some key elements of XtremWeb implementation

XtremWeb is the result of several implementation
decisions directly deriving from the constraints related
to the user environment and the necessity to progress
step by step towards the system organization described
in the previous section. As a consequence, some parts
of the system are currently implemented in a central-
ized way. We will describe several layers of the sys-
tem stack (Fig. 1): deployment (sub-layer (0)), com-
munications (sub-layer (1)), basic services (sub-layer
(2)), GC services (sub-layer (4)). Some elements of
sub-layer (3) will be detailed inSections 3 and 5re-
lated to fault-tolerant programming environments.

2.3.1. Deployment
Deployment is one of the first difficulties encoun-

tered when installing a GC system. Deployment con-
cerns the installation but also the upgrade of the sys-
tem components. Depending on the applications and
users, the GC system can be installed on home PCs
connected to the Internet by cables or DSL, on PCs
of student classrooms in Universities and Schools, on
PCs of a company connected to a private network or
on clusters of PCs. Altogether, these deployment cases
cover a large spectrum of installation procedures, se-
curity configurations/settings, system administrations
and intrusiveness limits. In XtremWeb, deployment
mainly concernsworker andclient executed on partic-
ipating PCs since thecoordinator is currently executed
by a single machine that could be installed specifically.

We will not detail in this section the deployment
issues in the context of home PCs, classroom PCs
and company private network of PCs since many

techniques exist for installing and upgrading software
on individual PCs or set of PCs (automatic installa-
tion/upgrade from a web server, from a distribution
server, from CDROM, etc.).

A more interesting deployment case concerns PCs
in clusters. While originally GC systems were de-
veloped for taking advantage of unused CPU cycles,
through cycle stealing, they appear to provide a light
weight alternative to classical Grid infrastructures for
harnessing the capacities of clusters belonging to dif-
ferent administration domains. Using PCs of clusters
should follow the security and resource management
policy of the cluster administrator. In the general case,
cluster accesses are granted from user account basis
and task submissions go through a batch scheduler.
Instead of accessing the clusters, the user logs onto
thecoordinator which manages a community of users.
The cluster administrators open a generic Grid account
only known by thecoordinator administrator. User can
only submit tasks through a batch scheduler interface
provided by thecoordinator (they have no direct ac-
cess to the clusters). All user tasks are submitted by
the coordinator to the cluster batch scheduler, using
its proper account, as a representative of the user. The
coordinator keeps track and logs the (task, user) dou-
blet so that if a user generates a security issue on one
of the clusters, appropriate actions (revocation, etc.)
can be taken. There are two ways for interfacing the
coordinator and the clusters for task submission. The
first one consists in running a daemon on the cluster
front-end which will be responsible for (1) download-
ing applications code and task parameters, (2) submit-
ting the corresponding tasks, using the batch scheduler
commands of the cluster, (3) forwarding/translating
the control commands (kill, status, etc.) issued by the
coordinator to the batch scheduler, (4) forwarding back
the batch scheduler responses to the commands, (5)
notifying the task terminations to the coordinator, (6)
transmit the results from the cluster to the coordinator
and (7) cleaning the local directory of the files related
to the user tasks. The translation interface between the
GC system and batch scheduler encounters the same
heterogeneity problem than in computational Grids:
many different kinds of batch schedulers are used on
clusters and there is no standard interface. A second
way of submitting user tasks is by launching a set of
GC workers as tasks of the cluster batch scheduler.
Once launched, the workers connect the GCcoordi-



422 F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437

nator for requesting tasks. This approach allows in-
stalling a simple daemon on the cluster front-end sim-
ply launching the number of workers required by the
coordinator. All the complexity of application codes
and parameter transfers, status and termination notifi-
cation, result transfer and local directory cleaning is
the responsibility of the GC workers. This reduces the
adaptation complexity of the interface between the GC
system and a specific batch scheduler to the develop-
ment of a set of few commands.

2.3.2. Communications
Communications between the different parts of

XtremWeb include remote procedure call (RPC) mes-
sages and data transfers. XtremWeb communication
architecture relies on three protocol layers. The first
level “connection” is dedicated to enable connection
between the entities possibly protected by firewall or
behind a NAT or a proxy. The second level “transport”
is responsible for reliable and secure message trans-
port. The third level “protocol” gathers several flavors
of RPC API.

Firewall bypassing is a main role of the connec-
tion layer. A standard firewall configuration stops in-
bound communications, except on some well defined
host/port, and generally allows outbound ones. As
XtremWeb is currently centralized, firewall bypass-
ing can be done if thecoordinator is reachable by
other parties (i.e. if coordinator inbound communica-
tions are allowed). Communication channels are then
never initiated by thecoordinator, but byclients, work-
ers or any other party; channels are used to trans-
mit messages to and from parties of a communica-
tion. This implies that no party except thecoordi-
nator needs to be behind an opened firewall for in-
bound communications. Communications are possible
if the coordinator opens dedicated ports and imple-
ments specific protocols. For instance, JavaRMI needs
the rmiregistry port and XML-RPC the HTTP one; any
other binding needs its own specific port and protocol
implementation.

Any other connection-oriented middleware can
be used for a more distributed implementation. Jxta
would typically provide the required features for
enabling communications between entities.

The transport layer relies on TCP/IP. Security can
then be achieved with standard SSL transport by en-
crypting the communications and forcing authentica-

tion so that communications occur between trusted
parties only.

XtremWeb has bindings for several RPC flavors
(JavaRMI andXML-RPC), based on TCP-IP, and pro-
vides necessary tool,XWIDL, to bind others such as
SOAP. It is out of the scope of this paper to discuss
technology details, but we can note some clues to
choose one or another. JavaRMI is the standard RPC
mechanism for Java language which is platform inde-
pendent, but can hardly inter-operate with other pro-
gramming languages. XML-RPC (and hence SOAP),
which describes remote procedure call messages in
XML, transported on HTTP, is programming language
independent but quite heavy and verbose. These tech-
nologies have a message size limit (i.e. few hundreds
kilobytes) and cannot manage huge messages for data
transfers, such as task data (parameters or results)
which may be several megabytes large, and are then
transferred as TCP packets.

2.3.3. Basic services
Because of the scale and dynamicity of LSDS, a

client cannot identify theworker (or the set ofwork-
ers) that can execute its task requests. Like for other
dynamic distributed systems, several basic Services
should be provided to enable the execution of client
requests: a resource discovery allowing a client to dis-
cover available services, a factory allowing dynamic
instantiation of services on workers, advertisement fa-
cilities giving information about available services,
and the life time management to control service ter-
mination.

A typical service call follows several steps: the re-
source discovery engine is invoked to return a factory
address being able to realize a service instantiation.
When the service is instantiated, the factory returns
the hosting machine address where the service can be
called. In a GC platform, this last step is slightly mod-
ified since service is subject to be transparently hosted
in several places during its life time (seeSection 2.3.4).
Finally, the service stays alive until it detects a termi-
nation condition (for example, it is not used any more
or it receives a termination signal).

Several distributed system architectures and im-
plementations are providing a subset of or all these
services. Popular examples are OGSA[25] for Grid
environments and Corba[36] for object-oriented dis-
tributed environments.



F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437 423

These basic services do not provide all mechanisms
required for running a GC application. Other higher
level services are necessary such as the ones described
in the next section.

2.3.4. XtremWeb services
The first implementation of XtremWeb considers

three main services:client which submits requests,
worker which executes them andcoordinator which
plays the role of intermediary betweenclients and
workers. In this version of XtremWeb,coordinator en-
capsulates different services (scheduler, results server,
applications repository).

2.3.4.1. Coordinator architecture. The middle tier
implements a set of coordination services which in
principle could rely on distributed architecture. For
example, the resource discovery service could rely on
distributed hash tables like CAN[39], CHORD[52],
PASTRY [40] and TAPESTRY[53]. However, we
choose to implement all these services in a centralized
way for three reasons: (1) to ease system development
and debug, (2) there are few results concerning the
performance comparison between centralized, hierar-
chical and fully distributed implementation of key ser-
vices such as resource discovery for example and (3)
because of a theoretical uncertainty. Currently there
is no theoretical result about the fundamental classi-
fication of P2P systems as distributed systems. It is
still uncertain that their two main behaviors: (a) Inter-
net as the communication network and (b) volatility
of participating nodes potentially without disconnec-
tion notification; make them fall into the category of
asynchronous distributed systems. Without this result
we cannot decide if we can rely on consensus or not
in developing distributed services.

The coordinator in XtremWeb is composed of
three services: the applications/services repository,
the scheduler, and the result server (sub-layer (4)).
These services work altogether around a tasks pool
maintained consistent by a task state graph.

The applications/services repository and the sched-
uler implement the three minimal basic services. The
repository provides anadvertisement service by pub-
lishing services and applications and making them
available to clients through standard communication
ports (i.e. Java RMI, XML-RPC). The scheduler man-
ages the XtremWebservice factory by instantiating

services and applications on workers, and manages
their life cycle. It starts their execution on workers
when clients submit jobs, stops them as expected (on
client demand or accordingly to their life cycle), and
corrects GC faults, if any, by finding available work-
ers to re-launch them. Currently, the scheduler imple-
ments the pull model of tasks allocation (i.e. tasks are
allocated on workers, on demand, following their ini-
tiative). Finally, workers deposit results on the result
server.

Services and applications are removed on demand
(the platform makes no assumption and continues to
publish and distribute them until they are discarded by
client intervention) or by an automatic LRU policy.

2.3.4.2. Worker architecture. The worker architec-
ture includes four components: the task pool, the exe-
cution thread, the communication manager and the ac-
tivity monitor. The activity monitor controls whether
some computations could take place in the hosting ma-
chine, regarding some parameters determined by the
worker configuration (%CPU idle, mouse/keyboard
activity, etc.). The tasks pool (worker central point)
is managed by a producer/consumer protocol between
the communication manager and the execution thread.
Each task may be in one of the three different states:
ready to be computed,running and saving. The first
state concerns downloaded tasks, correctly inserted
into the pool. The second state is for tasks being com-
puted. The last state corresponds to tasks which need
to upload results file to the result server; all tasks are
in this last state at the end of execution and are re-
moved only upon coordinator notification to ensure re-
sults are safely saved to the result server. The commu-
nication manager ensures communications with other
entities; it downloads task files (binaries and parame-
ters) and uploads results files, if any. When download
completes, the task is inserted into the task pool. The
execution thread extracts the first available task from
the pool, recreates the task environment as provided
by the client (i.e. standard input and output, directories
structure, etc.), writes on disk the task status, starts
computation and waits for the task to complete. When
the task completes, it creates the results file which in-
cludes standard output and new or modified files in the
directories structure and updates task status on disk.
If the computation is interrupted for any reason (i.e.
if the worker is stopped by mouse/keyboard activity),



424 F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437

the interrupted task will be recreated from the infor-
mation store on the disk and restarted on next worker
execution. The execution thread finally marks the task
state as completed, allowing the communication man-
ager to send results. It then expects notification from
the result server to (1) send the results again in case the
upload went wrong or (2) definitively remove the task.
On worker starts, any interrupted task is re-queued for
execution, and any pending results are retrieved to be
either re-sent to result server or removed from disk.

These two mechanisms ensure fault tolerance by (1)
restarting computation of any interrupted tasks and (2)
ensuring results uploads even on case of result server
failure.

2.3.4.3. Client architecture. The client is an inter-
mediary between user’s application and the GC sys-
tem. It is implemented as a library plus a daemon
process. The library provides an interface allowing a
dialog between the application and thecoordinator.
The basic actions ensured by theclient are identifi-
cation, tasks submission and results retrieval. To en-
hance fault tolerance, the client daemon implements
two mechanisms: (1) local logging of exchanged mes-
sages by saving on disk all requests descriptions and
exchanged files, and (2) synchronization with coor-
dinator at connection/re-connection time by getting
its previous requests and results from thecoordinator
which saves this information on its local disk. The first
mechanism insures recovery on the same machine in
case of fault and the second one makes possible to
stop and re-launch the client (user’s application) on
any machine. These two features allow a high mobil-
ity of the client.

3. Parallel programming API

Ideally, GC systems architects should provide pro-
gramming environments (interfaces and runtimes)
close to the ones used on parallel computers with an
automatic management of the specific behavior of
GC platforms: (a) implementing classical and well
known programming paradigms, (b) exposing stan-
dard programming interface, (c) removing the burden
of heterogeneity management, (d) providing efficient
execution and high performance, (e) hiding faults
detection and management.

Pragmatic implementations would certainly relax
some of these highly desirable properties but at the
cost of a potentially high deviation from the standard
interface and a higher complexity for the programmer.
For example, it is attractive for the system developers
to transfer the dynamicity and fault management to the
programmer by augmenting a standard programming
interface with function return codes exposing the run-
time states and specific functions for managing them.
FT-MPI is an example of this approach[18].

In XtremWeb, we decided to provide standard pro-
gramming interfaces, placing all the management of
GC platform specificities in the runtime. We follow
the layered architecture presented inFig. 1: we built
on top of an instable and dynamic distributed system
a virtualization layer providing to higher layers the il-
lusion of a stable and static execution platform.

3.1. Concurrent RPCs

The concept of remote procedure call[30] has been
used for a long time in distributed computing as it
provides a simple way to allow communication be-
tween distributed components. A significant portion
of scientific applications can be programmed using
the concurrent RPC programming style to implement
Master–Worker or work-flow-based applications.
In these applications, aclient may launch a set of
non-blocking RPCs to different servers, leading to a
concurrent execution. The client controls the progress
of the execution, detects task completion, manages
parameters/results dependencies, launches eventual
subsequent concurrent executions. CondorMW[27]
was one of the first programming environments for
programming Master-Worker applications. The RPC
programming style encounters a large popularity for
the Grid and several programming environments have
been proposed. The most known are GridRPC[49]
and OmniRPC[46].

GridRPC is a proposal to standardize a remote pro-
cedure call mechanism for Grid computing. Two dif-
ferent Grid computing systems, NetSolve[14] and
Ninf [47], propose implementations of this standard.
Netsolve and Ninf have not been designed to handle
the volatility of nodes in LSDS systems, even though
basic fault tolerance has been investigated for Netsolve
[38]. OmniRPC is another proposal of RPC-based pro-
gramming environment for the Grid.



F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437 425

In the RPC implementation for XtremWeb, called
XWRPC [17], the client automatically translates a
RPC call into a task manageable by the coordina-
tor. When it gets the result file back, the client ex-
tracts from it the output parameters. XWRPC provides
blocking and non blocking RPC calls with some as-
sociated Wait functions.

Most of the previous works on RPC have focused
on the development of high-performance RPC mech-
anisms and RPC for the Grid. Little attention has
been paid concerning fault tolerance in cluster, Grid
and GC contexts. However, fault tolerance has been
deeply studied for object-oriented distributed systems
and especially in the context of the Corba middleware.
One elegant proposal for FT-Corba implementation
relies on a three-tier architecture, close to the one of
XtremWeb, making the middle tier the corner stone of
the fault tolerance protocol[7]. This implementation
of FT-Corba assumes that its middle tier is deployed
on a pseudosynchronous system. This ensures the co-
herence of the middle tier replication.

Our implementation of fault tolerant concurrent
RPC follows some severe constraints: automatic and
complete transparency to the client, on a fully asyn-
chronous system. Thus we restrict our studies to
stateless executions on the worker side. RPC fault
tolerance aims to certify that all RPC calls suc-
ceed. Following the architecture presented inFig. 1,
sub-layers (4) and (5) use an imperfect failure detec-
tor of sub-layer (3) to ensure each RPC call success.
In such a system, it is impossible to design a perfect
failure detector (which suspects every and only dead
processes); thus, our failure detector may wrongly
suspect some processes, resulting in an over submis-
sions of RPC calls, which are harmless for the system
(but degrade performances).

For performance reasons, replication is imple-
mented for all parts, but these replicas are not nec-
essarily coherent to each others. Using this fault
tolerance scheme, any entity (client, coordinator or
worker) of the system can disappear without affect-
ing the integrity (but the performance) of a RPC.
The coordinator detects workers crash/disconnection
by time-out mechanism and re-schedules their allo-
cated tasks on other available workers using logged
messages.

To highlight the fault tolerance properties of
XWRPC, we present the result of running NAS NPB

Fig. 2. Execution of EP benchmark in faulty environment.

2.3 EP Benchmark (decomposed in 100 tasks, spend-
ing 15 s each one)—class C on the XtremWeb platform
using AMD 1.5 GHz (500 MB RAM) PCs connected
by a switched Ethernet 100 Mb s−1 network. Fig. 2
shows the execution times of EP benchmark—class C
on 16 processors (workers) when transient or defini-
tive faults are artificially generated.

For transient faults, a worker disappears every sec-
ond, for few seconds (2–3 s) and then re-connects the
system. For definitive faults, when a worker crashes,
it never re-contacts again the coordinator during the
experience (this implies that after detecting this fault,
the coordinator has to re-schedule the task to another
available worker). A crash happens every 15 s up to
eight workers (loss of 50% of workers).Fig. 2demon-
strates that the application can survive frequent tran-
sient and definitive faults. These faults are responsi-
ble for respectively 12 and 78% of execution time in-
creases. The low degradation of performance for tran-
sient faults is mainly due to the task logging mecha-
nism on the worker which saves its last running task
(on disk), and re-executes it when it re-connects the
system. If we take in account that these faults are han-
dled automatically by the system and no programming
efforts are needed from the programmer, then this
overhead stays reasonable. We are currently testing the
system tolerance to client and coordinator faults. Re-
sults of this experiment will be published in another
paper.

3.2. SMPD through fault-tolerant MPI

Users of high-performance computing platforms are
familiar with symmetric message passing and their ap-
plications often use MPI[51] as the message passing



426 F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437

library. The high volatility of nodes in LSDS implies
the use of a fault-tolerant MPI implementation. The
way how faults should be managed in the context of
MPI is still an open issue[28]: (a) the programmer
of the application may save periodically intermediate
results on reliable media during the execution in case
of an entire restart, (b) the functions of the MPI im-
plementation may be augmented to return information
about faults and accept communicator reconfiguration
[19] or (c) the MPI implementation hides the faults to
the programmer and the user by providing a fully auto-
matic fault detection and recovery. The latter approach,
while interesting for the end user, suffers either from
limited fault-tolerant capabilities or high resource cost.
Examples of such automatic fault-tolerant MPI imple-
mentations are based on the optimistic or causal mes-
sage logging approach. While in theory these proto-
cols may tolerate any number of faults if augmented
by appropriate mechanisms, none of their existing im-
plementation tolerates more than one fault, involving
the restart of the full system in case of multiple faults.
Examples of automatic faults-tolerant MPI protocols
that tolerateN concurrent faults of MPI processes,N
being the total number of MPI processes, follow the
pessimistic message logging principle (storing all in
transit messages on reliable media) and thus require a
large number of non-computational reliable resources.
Refs.[11,12] present extensively the related work of
this domain.

To study several fault tolerance protocols for MPI,
we have launched the MPICH-V project which is a
research effort with theoretical studies, experimen-
tal evaluations and pragmatic implementations of a
fault-tolerant MPI. A MPICH-V environment encom-
passes a communication library based on MPICH[29]
and a runtime environment. The MPICH-V library can
be linked with any existing MPI program as usual
MPI libraries. In case of LSDS, the runtime (respon-
sible for process distribution, fault detection, process
restart, checkpoint scheduling, etc.) occupies several
layers (at least 3 and 5) of the software stack, as seen
in Fig. 1.

The library implements all communication subrou-
tines provided by MPICH. Its design is a layered ar-
chitecture: the peculiarities of the underlying commu-
nication facilities are encapsulated in a software layer
called adevice, from which all the MPI functions are
automatically built by the MPICH compilation system.

Fig. 3. General organization and components of MPICH-V1 and
MPICH-V2.

The MPICH-V library is build on top of a dedicated
device ensuring a full-fledged MPICH v. 1.2.5, im-
plementing the Chameleon-level communication func-
tions. The underlying communication layer relies on
TCP for ensuring message integrity.

Two protocols, based on uncoordinated check-
pointing associated with pessimistic message logging,
have been implemented and compared for LSDS:
MPICH-V1 and MPICH-V2. The two protocols use
a reliable coordinator and checkpoint servers.Fig. 3
presents the general organization and the components
used for the two protocols.

MPICH-V1 relies on the concept of Channel Mem-
ory (CM) to ensure fault tolerance. CMs are dedicated
nodes providing a service of message tunneling and
repository. Fault tolerance is implemented in a highly
decentralized way, saving the computation and com-
munication contexts independently. For each node, the
execution context is saved (periodically or upon a sig-
nal reception) on remote checkpoint servers. A com-
munication context is stored during execution by sav-
ing all in-transit messages in CMs. Thus, the whole
context of a parallel execution is saved and stored in
a distributed way. The runtime assigns CM to nodes
by associating each CM to different sets of receivers.
Following this rule, a given receiver always receives
its messages from the same CM, called itshome CM.
When a node sends a message, it actually puts the mes-
sage in the receiverhome CM. During a restart, the
process is re-executed from its last valid checkpoint
image and communications are replayed until the pro-
cess reaches the crash point. Emissions are simply fil-
tered since they are already saved on the destination
node CM. Receptions are re-executed contacting only
the processhome CMs. MPICH-V1 is described ex-
tensively in Ref.[11].



F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437 427

MPICH-V1 imposes that each message crosses one
CM. This has a direct impact on performance, reduc-
ing the bandwidth and increasing the latency by a
factor of 2. The number of CMs should also be sig-
nificant since all receivers associated with the same
CM will share its communication bandwidth. To over-
come these limitations, we have designed MPICH-V2
which associates the low additional resource cost of
sender-based message logging and the capacity to tol-
erateN concurrent faults of the pessimistic message
logging strategy. The sender-based pessimistic mes-
sage logging protocol assumes that the logging of mes-
sages is split in two parts. One part uses a sender-based
logging method storing the messages payload within
the sender on a non-reliable media. The other part (the
event logger) is used to store dependency information
associated to these messages and must be run on a re-
liable system. It stores and delivers dependency infor-
mation about messages exchanged by the computing
nodes. On restart, a process is re-executed from its last
valid checkpoint image and the event logger sends it
the identity of the senders that have sent messages be-
tween the last process checkpoint and the crash. These
sender nodes are then notified to re-send the lost mes-
sages using their local message logs. MPICH-V2 is
described extensively in Ref.[12].

At least three parameters are significant for com-
paring the respective merits of fault tolerance proto-

Fig. 4. Execution time breakdown of the three MPI implementations for CG-A and BT-B.

cols: performance overhead, number of stable nodes
required for high performance and tolerance to fre-
quent faults.

We evaluate the performance using a cluster of PCs,
in dedicated mode, under Linux 2.4.18. The cluster
consists in two parts: 32 computing nodes (Athlon XP
1800+, running at 1.5 GHz and 1 GB of main mem-
ory), and 12 auxiliary machines (dual-Pentium III ma-
chines running at 500 MHz with 512 MB of memory)
connected to a single 48-port Ethernet 100 Mb s−1

switch. Test programs are compiled using the PGI
PGF77 compiler.

Fig. 4 presents execution time breakdown of the
NAS Benchmarcks NPB2.3 CG Class A and BT Class
B (two extremes of the computation to communication
ratio) for three MPI implementations: MPICH-P4 (the
reference implementation for TCP), MPICH-V1 and
MPICH-V2.

The system setup for MPICH-V1 usesN/4 memory
channels,N being the number of computing nodes. A
single checkpoint server is used. For MPICH-V2, it
uses a single reliable node, holding a single checkpoint
server and a single event logger.

Fig. 4 shows that the computation times are the
same for all the implementations for the two bench-
marks. The poor performance of MPICH-V1 and
MPICH-V2 for CG-A is explained by the com-
munication time, which increases dramatically, due



428 F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437

Fig. 5. MPICH-V2 performance for BT-A on four nodes when
the number of faults increases during the execution.

to the overhead of the message logging protocols.
MPICH-V1 outperforms MPICH-V2 on this test
because the event logging of MPICH-V2 requires
acknowledgment messages that significantly increase
the latency for small messages. For BT-B, the com-
munication performance of MPICH-V2 is better than
both MPICH-P4 and MPICH-V1. This is due to lower
bandwidth of MPICH-V1 for large messages (each
message should cross a CM) and the different ways
how asynchronous communications are handled in
MPICH-P4 and MPICH-V2.

These results show that message logging has a
non-negligible impact on performance for applica-
tions featuring short messages and low computation
to communication ratio. In the other cases that are
the actual targets of MPICH-V, the sender-based pro-
tocol provides better performance than the protocol
using remote logging and requires much less reliable
nodes (1 versus 9 for the 32 computing nodes of our
experiments).

Fig. 5 presents the MPICH-V2 execution time for
BT Class A using four computing nodes and a single
reliable node for executing the checkpoint server and
the event logger, when faults occur during the execu-
tion. For this test, (a) the checkpoint of a node immedi-
ately follows the one of another node, (b) we simulate
faults by sending a termination signal to a randomly
selected MPI process, (c) the execution is restarted
immediately from the checkpoint image provided by
the checkpoint server.

Fig. 5 demonstrates (1) the low overhead of the
checkpoint system when no fault occurs (less than
20% of the execution time), (2) the smooth degrada-
tion of the execution time according to the number
of consecutive faults, and (3) an execution time lower
than twice the reference execution time (without fault)
when nine faults occur during the execution. This last
test clearly highlights the fault tolerance properties of
MPICH-V2 which tolerates up to 1 fault every∼50 s.
Similar results have been obtained for MPICH-V1
[11]. Thus the difference between the two protocols
comes from their performance overhead and the num-
ber of required stable nodes. MPICH-V2 outperforms
MPICH-V1 on these two parameters.

4. Security

The security issue for a multi-participant GC sys-
tem can be divided into four parts: the data integrity/
privacy, the application result correctness, the infras-
tructure integrity and the integrity/privacy of the par-
ticipating computers resources. Several works have
been presented for the first three parts[16,42]. In this
part we focus on the later part.

The security system must protect the participant
computers from virus-like attack, including hardware
alteration, configuration modification, personal files
spying and worms introduction. A general approach to
protect a computer running a program is to confine the
code execution inside an unbreakable envelope. Sand-
boxing is a well known technique implementing this
principle by filtering the system calls which appear to
be the main security holes of recent operating systems.

According to a security policy, sandboxing neutral-
izes hostile behaviors, limits resource usage and pre-
vents any attempt to exploit security holes on the host.
Because it offers a complementary security mecha-
nism providing a runtime control of the execution,
sandboxing may appear as the cornerstone technology
to allow a wide and safe use of LSDS systems. The
most known sandbox mechanism is the Java Virtual
Machine which interprets a byte-code. All interactions
between the program and the system pass through the
JVM which filters them. Moreover, the protection do-
main mechanism allows the JVM to filter the system
calls in a different way in the successive phases of
the program. Unfortunately, the Java machine cannot



F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437 429

handle easily native codes and thus does not provide
a generic sandboxing solution.

4.1. Sandboxes

Three kinds of native sandboxes can be used to
protect a participant machine. Several of them are
based on Ptrace which is a mechanism implemented
on all Posix compliant systems. The task to spy is
spawned by a monitor, referenced in the kernel. Ev-
ery time the task issues a system call, it is frozen
and the monitor is waked-up by the system in or-
der to check the task memory for the argument va-
lidity. If arguments are compliant with the security
policy, the system call is executed by the kernel and
the computation continues. In the opposite case, the
task is destroyed. The main sandbox based on Ptrace
is Subterfugue[34], a monitor which uses python
policies. Ptrace suffers from a security hole exposed
to race-condition attacks: between the monitor grant-
ing time and the system call execution time, the ar-
guments can be changed by another thread of the
task.

A more secure mechanism follows the principle of
system call emulation. A virtual native machine inter-
cepts the system calls of the programs, checks their
validity and issues them on the actual system, for-
warding the result to the application. This technique
offers an easier control of the runtime environment,
or the capacity to emulate an operating system on one
another. Two projects implement this principle: User
Mode Linux (UML) is a user space program acting
as a Linux kernel by emulating all the system calls.
VMware provides virtual machines on top of a host
operating system, giving them the illusion of a di-
rect access to the host hardware. By this way it al-
lows the execution of a full and standard operating
system inside a virtual machine running on an operat-
ing system of another kind. Virtual machines are se-
cure since the accesses of the actual host resources
are fully controlled by the virtual machine. However,
this approach is slow: the time overhead for some sys-
tem calls can be as large as a factor of 1000. Such
overhead may be unacceptable in a high-performance
GC system.

A more recent sandboxing method based on Linux
Security Module (LSM) has been proposed providing
an interposition mechanism directly inside the kernel.

LSM is a framework in the Linux kernel which al-
lows inserting security modules directly in codes of
system calls. This solution is secure because syscall
checking is done inside the kernel. It is also efficient
since the execution of the verification code does not
imply any context switch. As far as we know, there
is no existing module specifically designed for the
context of GC and P2P systems. This is the reason
why we have developed SBLSM described in the next
section.

4.2. SBLSM

SBLSM is a module for LSM dedicated to GC and
P2P systems. The principle is to apply a security policy
to a set of binaries processes. Every time a sandboxed
process issues a system call, the module checks a ded-
icated variable which can take three different states:
GRANT, the specific controls are called, DENY, the
call is denied and return with an error number, and
ASK, the module asks an authority (i.e. an adminis-
trator) what to do via the security device. The goal of
this preliminary check is to execute the specific con-
trols (which can be slow) only when this is necessary.
If the call is granted, the specific permission verifica-
tions are called.

Currently, SBLSM provides three controls—(1)
File access control: if the system call manipulates
files, the module checks if these files are in its per-
missions list. This list includes files or directories,
and can be used in a positive way (the authorized
files must be in the list) or negative (must not). (2)
Network access control: in the same way, the module
filters the network connections with a black or a white
list. This kind of limitations can be useful for com-
municating sandboxed applications (MPI, OpenMP).
(3) Process Signal Control: the sandboxed processes
cannot send signals nor Ptrace non-sandboxed pro-
cesses. In order to communicate with user space, the
module implements a special device which allows
the modification of the filtering parameters using a
simple and dedicated format. It allows the kernel
to ask the user (ASK mode) for a decision. In that
case, the format can be human readable (ASCII) for
direct treatment or XML for automatic treatment. A
special program allows the system administrator to
load ASCII policies in the module via the special
device. The module can be configured to work in



430 F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437

a strict mode where the spaces of sandboxed and
normal processes are strictly disjoint (real confine-
ment): the resources of one space cannot be accessed
by the other. This mode allows protecting the data
of an application from the other users of the ma-
chine.

4.3. SBLSM performance experiment

In this paragraph, we present an abstract of a per-
formance evaluation of the SBLSM sandbox for com-
mon operations of GC and P2P systems that will be
published separately.

The performance experiment uses a dedicated ma-
chine with minimal Linux system: PPro 200MHz with
2.4.18 kernel and 2.4.18-lsm1 patch.

For this experiment, we use synthetic benchmarks
with a huge number of system calls. Indeed, there is no
slowdown on calculus because the interposition cost is
only on the system calls. We present two typical tasks
of GC and P2P systems: (a) downloading a big file and
(b) expanding a big archive. For the first benchmark,
we use the wget program to download a 100 MB file
over a 100 Mb s−1 LAN. For the second benchmark,
we untar the Linux kernel archive (40 MB), which cre-
ates 14 313 files. We measure execution time for three
configurations: (1) without security module, (2) secu-
rity module is loaded but the program is not regis-
tered as a sandboxed one, and (3) security module is
loaded with a basic security policy using white listing
of authorized system operations, and the program is
sandboxed.

The Fig. 6 shows the result of this experiment: the
overhead of the sandbox is low, for non-sandboxed
as well as for sandboxed processes, even between
1 and 6% when a massive number of system calls
are issued. We believe that in the absence of stan-
dard and high-performance virtual machines, an inter-
position technique located inside the kernel, such as
the one based on LSM, provides an attractive perfor-
mance/security trade-off.

Fig. 6. SBLSM performances on synthetic benchmarks.

5. Large-scale experiments using XtremWeb

The purpose of this section is to present some ex-
periments about deploying scientific application over
three clusters managed locally with different systems.
XtremWeb is used to aggregate resources of these dif-
ferent sites with minimal effort. The applications dis-
cussed in the following paragraphs are programmed
using the XWRPC interface.

5.1. Understanding protein folding by mutations

To demonstrate the full system, we ran a biomolecu-
lar application for the IBBMC (Molecular and Cellular
Biochemistry and Biophysics Institute) Laboratory at
Paris South University (France) which research inter-
ests include understanding protein dynamic structure
parameters that affect stability and activity of proteins.

The general context is the understanding of sta-
bility and expression parameters of proteins activity
from the analysis of their dynamic properties and their
structure. The main goal is to evaluate the stability
and perturbing factors of the protein folding by mu-
tations. Molecular modeling is used to explore the
conformational possibilities of macromolecules at a
time-scale lower than 1 ns. The application consists
in a multi-parameters computation requiring a large
set of independent tasks. This is a four-step process.
The first step generatesn starting conformations along
coordinate of interest. The second step performsm
constrained molecular dynamics simulations for each
starting conformation (n×m workers). The third step
gathers statistics and the final step computes free en-
ergy profile.

5.2. Understanding high-energy cosmic rays

The aim of the Pierre Auger Observatory is to detect
showers produced by the interaction of cosmic rays
of energy greater than 1019 eV with the atmosphere.
In order to determine the origin of these cosmic rays,
their direction and energy must be measured with ac-
curacy. Their nature (photons, protons or nuclei) must
be known too.

These measurements are based on the properties
of the secondary particles of the shower reaching the
ground (number, position, energy, nature and mean
arrival time) and on the study of the nitrogen fluo-



F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437 431

rescence generated by these particles through the at-
mosphere. However, statistical fluctuations in the de-
velopment of an air-shower exist. For that reason,
the data analysis needs a large number of simulated
air-showers, with a good accuracy, to study these fluc-
tuations. As duration of one simulation is about 10 h,
the needed simulation computing time is estimated at
106 h for all the experiment.

The Aires[48] (Air-shower Extended Simulations)
is one of the main program of simulation used by the
Auger collaboration; it is already used in Computing
Center of the IN2P3 at Lyon. As computer technolo-
gies evolve, it appeared that Aires simulations can now
fit with the capabilities of GC platforms.

5.3. Testbed

Fig. 7 presents the testbed used for experiencing
XtremWeb at a significant scale.

Simulation computations are distributed over three
different sites: two sites in France, one at the LRI
and the other at Grenoble, and one site in Wisconsin,
USA. The coordinator runs on a dedicated machine at
LRI. Workers run on different sites, managed by batch
schedulers. For these experiments, XtremWeb work-
ers are deployed as tasks submitted to the batch sched-
ulers. Once launched, they pull tasks to XtremWeb

Fig. 7. An XtremWeb testbed used for testing XtremWeb using
the AIRES application.

Table 1
CPU provided by different domains

Exp. Wisc LRI (1800 MHz) Total

600 MHz 900 MHz

LRI 30 30
Wisc 61 104 165
W + LRI 50 73 9 132

coordinator and work as if they were running on indi-
vidual PCs. Grenoble site uses PBS[22] and Wiscon-
sin and LRI sites use Condor[32]. As these two batch
systems use different resource allocation policies, no
prediction can be made about how and when our work-
ers are scheduled. Because these sites cannot be used
in dedicated mode, experiments cannot be made in the
same experimental conditions. This is the reason why
there is a specific configuration for each experiment.

Table 1summarizes the host types used for each
experiment of the biochemistry application.

For the HEP experiment we have made five experi-
ments: WISC-97 (97 processors at Wisconsin), WL-
113 (113 processors at Wisconsin and LRI), G-146
(146 processors at Grenoble), WLG-270 (270 proces-
sors at Wisconsin, LRI and Grenoble) and WLG-451
(451 processors at Wisconsin, LRI and Grenoble).

5.4. Evaluation

In this section we present selected results from the
Auger experiment.Fig. 8 shows resource utilization
for each experiment.

Fig. 8. Processors utilization.



432 F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437

Fig. 9. Task execution times sorted left to right in a decreasing
order.

All curves show three different phases. The first is
the warm-up phase where a growing number of PCs
are allocated; then the curves reach a plateau where
all the requested CPUs are contributing to the compu-
tation. The third is a cool down phase where a rapidly
diminishing number of PCs are finishing their tasks.
This figure demonstrates that when an increasing num-
ber of PCs is used, the execution time decreases.Fig. 9
shows the execution time for each task, decreasingly
sorted. We note the remarkable stability of the system
at Grenoble (G-146 curve) where all hosts are iden-
tical (CPU, memory, etc), whereas WISC-97 clearly
shows two levels corresponding to the two available
host types (PIII 533 MHz and 900 MHz). The stabil-
ity for this experiment is bad compared to the one
found in G-146, as reflected by the curve irregularity
between the two plateaus. This is due to two main fac-
tors: (1) Condor may allocate other tasks to the same
resource (i.e. the same CPU), depending on the local
resource management policy and (2) the network con-
ditions (performance and congestion) are not the same
between Wisconsin and LRI, and between Grenoble
and LRI.

Fig. 10presents the arrival time of the task results
from the first one at the left to the last one at the right.
The plateau of G-146 are explained by the identical
performance of the PCs and the identical task com-
plexity. All the PCs begin and end their task at the
same time. When heterogeneity and network dynam-
icity increase the curves become more flat. We can
notice some irregularity at the end of all curves. This

Fig. 10. Tasks results arrival time.

is due to an unexpected phenomenon: few low per-
formance PCs get some tasks at the end of the exper-
iment which terminates only when these PCs return
their result. A better resource management, giving the
last tasks preferably to the fastest PCs, would avoid
this phenomenon.

The last figure (Fig. 11) presents a fault tolerance
experiment during which the network connection be-
tween the coordinator and Grenoble was stopped and
restored without notice.

The figure demonstrates that the system tolerates a
massive fault loosing half of the participating nodes.
After the fault, the PCs at Grenoble reconnect the
coordinator and obtain tasks but the task allocation

Fig. 11. Number of PCs used for the duration of the experiment.
A massive fault occurs att = 5 min (network disconnection with
Grenoble). The network connection is restored att = 8 min.



F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437 433

takes more time than at the beginning of the execution.
This is due to the connection protocol of the worker.
When the coordinator does not respond immediately,
a worker increases exponentially the delay before the
next connection tentative. An execution with 270 PCs
is given as reference.

6. Lessons learned from the perspective of
interaction between GC and grid

During the past 4 years we have investigated the
issue of computing in large-scale distributed systems.
All the addressed topics (deployment, programming
and security) have been studied, tested and evaluated
using a real platform: XtremWeb. Here are the three
main learned lessons:

(I) A first intuitive idea is that harnessing the re-
sources in clusters would lead to mechanisms
closed to the ones used in Grid systems in terms
of application codes, parameters and results
transmission, interaction with batch schedulers
and load balancing between clusters. By simply
launching multiple instances of the XtremWeb
worker as applications on the clusters, through
their possibly specific batch schedulers, we
demonstrate that (a) the transfer of codes, pa-
rameters and results can be completely handled
by the GC system, removing the need to imple-
ment specific mechanisms for these purposes,
(b) the development of a complex translation
interface between the GC scheduler and the clus-
ter batch schedulers could be avoided and (c)
the pull allocation model of tasks in XtremWeb
(and other GC systems) intrinsically handles
the load balancing between the clusters, even in
complex scenario where the network conditions
vary dynamically.

(II) Programming environment developers may be-
lieve that the volatility of LSDS participating
nodes mismatches the unavoidable overhead
of automatic fault-tolerant techniques making
user-based fault tolerance approaches much
more relevant. Our results in deploying RPC
and MPI applications over XtremWeb using
XWRPC and MPICH-V demonstrate that (a)
these automatic fault-tolerant programming envi-

ronments can tolerate a high frequency of faults
(as much as more than 1 min−1 in MPICH-V2),
(b) the overhead of fault tolerance mechanisms
for fault-free executions stays low, and more
importantly (c) the performance degradation for
faulty executions stays lower than a factor 2 at
the highest volatility level.

(III) A third intuitive idea is that providing a
high security level for the participating nodes
against corruption tentative would impose a
high-performance overhead since all of the ap-
plication actions should be analyzed as potential
threats. Our sandbox based on kernel level in-
terposition demonstrates that the interposition
cost is negligible and that the execution of a
security policy on all system calls of key opera-
tions of LSDS systems has negligible impact on
performance.

The development of GC systems and the one of
XtremWeb have followed a trajectory parallel to the
one of Grid systems such as Globus[3] and Unicore
[5]. Nevertheless we can observe some convergence
elements between GC and Grid. The paper[24] gives
many details about the similarities and differences be-
tween P2P and Grid systems. From the system devel-
oper perspective our experience as the developers of
XtremWeb gives a complementary point of view.

Despite a neutral position concerning Grid systems,
every architecture evolution we made and we are cur-
rently envisioning for our system conducts XtremWeb
invariably closer to Grid systems. Of course, the evo-
lution of Globus to GT3[41] and the notion of Grid
services is one reason of this convergence. The service
architecture of XtremWeb is the result of an evolution
toward a GC system more flexible and secure being
able (1) to provide storage and communication sharing
in addition to CPU sharing and (2) to propose alterna-
tive implementations of functionalities for scheduling
and communication between participants. Since Grid
services are emerging as a de facto standard for large
distributed systems, it is likely that the next generation
of XtremWeb will use Grid services as basic building
blocks.

At the beginning of XtremWeb we were tempted
to design and develop new parallel and distributed
programming paradigms more adapted to the system
behavior such as scale and volatility than classi-



434 F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437

cal programming environments like RPC and MPI.
However, discussions with potential users rapidly
convinced us that two factors were against this di-
rection: (1) potential users have already translated
their applications several times in the past following
the evolution of parallel computing platforms. They
were reluctant to spend time on translating their ap-
plications to a non-standard and new programming
paradigm, (2) they were not convinced of the ben-
efit of GC systems. These factors were the motiva-
tions for developing XWRPC and MPICH-V. These
two programming environments provide transparent
and automatic fault tolerance for applications writ-
ten in MPI or using the blocking/non-blocking RPC
paradigm (Master-Worker, workflow, etc.). RPC and
MPI are also two programming paradigms currently
available for the Grid. Ultimately, the benefit of this
convergence for the users is to keep the number of
programming environments to learn very low. As an-
other element of this convergence, the next version of
our fault-tolerant MPI implementation (MPICH-V3)
will use a hierarchical protocol specifically designed
for the Grid being able to harness resources of clusters
and GC Systems.

Technical differences between the two systems still
exist and are mainly related to their scale and their
level of resource control. The technical differences
mainly concern (1) deployment (2) fault tolerance and
(3) security.

GC systems are concerned by ease of deployment.
For harnessing many resources they should provide
easy install/uninstall tools and communication pro-
tocols automatically dealing with firewall/NAT/proxy
issues. As discussed in the paper, GC systems may
use cluster nodes as participating resources. This is
actually the case for SETI@home for example and
XtremWeb. If Grid systems become more general, they
would probably extend their resource usage to indi-
vidual PCs and rely on the same solutions for de-
ployment and communication issues. In this situation,
there would be no obvious differences between the re-
sources used by the two systems.

Fault tolerance is mandatory in GC systems since
the lack of control allows (1) any participant to leave
the systems without any prior mention and (2) dis-
tributed and coordinated attacks can be launched
against the systems itself. Thanks to their higher level
of control of the users and participants, Grid may

not be subject of such issues. However, Grid systems
should still find solutions to cope with the timely and
costly consequences of involuntary faults. More gen-
erally, as Grid systems will become larger, faults will
become more frequent and the control level on users
and participants will become weaker. For this param-
eter too, we believe that Grid will converge to GC
systems with the adoption of strong fault tolerance
mechanisms.

Security is certainly the most differentiating factor
between the two systems. In Grid, users are the es-
sential source of threat while in GC systems, threats
may also come from the application, the infrastruc-
ture, the computing nodes and the data (parameters
and results). User authentication is implemented care-
fully in Grid and mostly inexistent in existing GC
Systems. Data privacy is enforced in Grid sites by
existing well configured mechanisms of the operat-
ing systems. Such correct configuration cannot be as-
sumed in GC systems and more importantly the lack
of control cannot preclude a participant to spy the data
used or produced by an application. Resource pro-
tection is implicit in Grid since the users know that
their actions are logged and some revocation actions
can be decided against them if they are at the ori-
gin of a system problem. This is not true in GC sys-
tems where the resources computing the application
with the parameters and analyzing the results should
be self-protected by sandbox. The security of applica-
tion results is also implicit in Grid because the users
trust the institution hosting the resource. In GC sys-
tem, the lack of trust imposes the use of result certi-
fication techniques[43]. Some security systems have
been designed like in Ref.[31] and CRISIS[10] for
LSDS. Compared to current Grid security designs,
they also provide the notion of certificate, delegation,
lifetime, revocation, etc., but with more scalability.
However, they rely on more complex designs. Thus,
it is likely that, because of the lack of control, either
GC systems will not provide the trust level of Grid
systems or the complexity of a security infrastruc-
ture providing the same level of trust would be much
higher than the one developed currently for Grid sys-
tems.

Based on all the previously discussed parameters,
we can clearly conclude a convergence trend between
Grid and GC, Grid systems being motivated by more
scalability and GC systems by more generality.



F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437 435

References

[1] Web Services.www.webservices.org.
[2] Mithral Communications and Design Inc., The COSM Project,

2002.http://www.mithral.com/projects/cosm/.
[3] I. Foster, C. Kesselman, J. Nick, S. Tuecke, The physiology

of the grid: an open grid services architecture for distributed
systems integration, Globus Project, 2002,www.globus.
org/research/papers/ogsa.pdf.

[4] A.D. Alexandrov, M. Ibel, K.E. Schauser, C.J. Scheiman,
SuperWeb: towards a global web-based parallel computing
infrastructure, in: Proceedings of the 11th IEEE International
Parallel Processing Symposium (IPPS), April 1997.

[5] J. Almond, M. Romberg, The Unicore project: uniform access
to supercomputing over the Web, in: Proceedings of the 40th
Cray User Group Meeting, Stuttgart, Germany, 1998.

[6] D. Anderson, BOINC: Berkeley Open Infrastructure for
Network Computing, 2002.

[7] R. Baldoni, C. Marchetti, Three-tier replication for
FT-CORBA infrastructures, Software Pract. Exper. 33 (2003)
767–797.

[8] A. Barak, S. Guday, R.G. Wheeler, The MOSIX distributed
operating system: load balancing for UNIX v. 672,
Springer-Verlag, New York, NY, 1993, p. 221.

[9] A. Baratloo, M. Karaul, Z. Kedem, P. Wyckoff, Charlotte:
metacomputing on the Web, in: Proceedings of the Ninth
Conference on Parallel and Distributed Computing Systems,
1996.

[10] E. Belani, A. Vahdat, T. Anderson, M. Dahlin, The CRISIS
wide area security architecture, in: Proceedings of the
USENIX Security Symposium, San Antonio, Texas, 1998.

[11] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fédak,
C. Germain, T. Hérault, P. Lemarinier, O. Lodygensky, F.
Magniette, V. Néri, A. Selikhov, MPICH-V: Toward a Scalable
Fault Tolerant MPI for Volatile Nodes, SC02, Baltimore,
USA, November 2002.

[12] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik, P.
Lemarinier, F. Magniette, MPICH-V2: A Scalable Fault
Tolerant MPI for Volatile Nodes Based on the Pessimistic
Sender Based Message Logging, Proceedings of the 16th
High Performance Networking and Computing conference
(SC’03), Phoenix, USA, November 2003.

[13] T. Brecht, H. Sandhu, M. Shan, J. Talbot, ParaWeb: towards
world-wide super-computing, in: Proceedings of the Seventh
ACM SIGOPS European Workshop on System Support for
Worldwide Applications, 1996.

[14] H. Casanova, J. Dongarra, NetSolve: a network-enabled
server for solving computational science problems, Int.
J. Supercomput. Appl. High Perform. Comput., Sage
Publications 11 (3) (1997) 212–223.

[15] B.O. Christiansen, P. Cappello, M.F. Ionescu, M.O. Neary,
K.E. Schauser, D. Wu, Javelin: Internet-based parallel
computing using Java, Concurrency Pract. Exper. 9 (11)
(1997) 1139–1160.

[16] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, Grid
information services for distributed resource sharing, in:
High-Performance Distributed Computing (HPDC-10), IEEE
Press, 2001.

[17] S. Djilali, P2P-RPC: programming scientific applications on
peer to peer systems with remote procedure call, in: I. Press
(Ed.), Proceedings of the Third International Symposium on
Cluster Computing and the Grid, Tokyo, Japan, November
2003.

[18] G. Fagg, J. Dongarra, FT-MPI: fault tolerant MPI, supporting
dynamic applications in a dynamic world, in: Euro
PVM/MPI User’s Group Meeting 2000, Springer-Verlag,
Berlin, Germany, 2000, pp. 346–353.

[19] G.E. Fagg, A. Bukovsky, J.J. Dongarra, HARNESS and fault
tolerant MPI, Parallel Comput. 27 (11) (2001) 1479–1495.

[20] S. Fanning, Napster: a P2P file sharing, 1999.http://www.
napster.com.

[21] G. Fedak, C. Germain, V. Neri, F. Cappello, XtremWeb:
a generic global computing platform (CCGRID-2001), in:
Special Session Global Computing on Personal Devices, IEEE
Press, 2000.

[22] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik,
P. Wong, Theory and practice in parallel job scheduling, in:
D.G. Feitelson, L. Rudolph (Eds.), Job Scheduling Strategies
for Parallel Processing, Springer-Verlag, 1997, pp. 1–34.

[23] M. Fischer, N. Lynch, M. Paterson, Impossibility of
distributed consensus with one faulty process, J. ACM 32
(1985) 374–382.

[24] I. Foster, A. Iamnitchi, On death, taxes, and the convergence
of peer-to-peer and grid computing, in: Proceedings of
the Second International Workshop on Peer-to-Peer Systems
(IPTPS’03), February 2003.

[25] I. Foster, C. Kesselman, J. Nick, S. Tuecke, Grid services for
distributed system integration, in: IEEE Comput., June 2002,
pp. 37–46.

[26] D.P. Ghormley, D. Petrou, S.H. Rodrigues, A.M. Vahdat, T.E.
Anderson, GLUnix: a global layer Unix for a network of
workstations, Software Pract. Exper. 28 (9) (1998) 929–961.

[27] J.P. Goux, S. Kulkarni, J. Linderoth, M. Yoder, An
enabling framework for master-worker applications on the
computational grid, in: I.C. Society (Ed.), Proceedings of the
Ninth IEEE Symposium on High Performance Distributed
Computing, Pittsburgh, PA, 2000, pp. 43–50.

[28] W. Gropp, E. Lusk, Fault tolerance in MPI programs, Special
Issue of the J. High Perform. Comput. Appl., 2002.

[29] W. Gropp, E. Lusk, N. Doss, A. Skjellum, High-performance,
portable implementation of the MPI message passing interface
standard, Parallel Comput. 22 (6) (1996) 789–828.

[30] S.M. Inc., RPC: remote procedure call protocol specification
version 2, in: Tech. Rep. DARPA-Internet RFC 1057, SUN
Microsystems Inc., June 1988.

[31] B. Lampson, M. Abadi, M. Burrows, T. Wobber,
Authentication in distributed systems: theory and practice,
in: Proceedings of the 13th ACM Symposium on Operating
Systems Principles, 13–16 October 1991, pp. 165–182.

[32] M. Litzkow, M. Livny, M. Mutka, Condor—a hunter
of idle workstations, in: Proceedings of the Eighth
International Conference of Distributed Computing Systems,
IEEE Computer Society Press, Madison, Wisconsin, 1988,
pp. 104–111.

[33] M.J. Litzkow, M. Livny, M.W. Mutka, Condor—a hunter of
idle workstations, in: Proceedings of the Eighth International

http://www.webservices.org
http://www.mithral.com/projects/cosm/
http://www.globus.org/research/papers/ogsa.pdf
http://www.globus.org/research/papers/ogsa.pdf
http://www.napster.com
http://www.napster.com


436 F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437

Conference on Distributed Computing Systems (ICDCS),
IEEE Computer Society, Washington, DC, 1988, pp. 104–111.

[34] C. Mike, M. Pavel, Subterfugue: a frame-work for
observing and playing with the reality of software.http://
subterfugue.org/.

[35] N. Nisan, S. London, O. Regev, N. Camiel, Globally
distributed computation over the internet-the popcorn project,
in: Proceedings for the 18th International Conference on
Distributed Computing Systems, 1998.

[36] CORBA 2.1 Common Object Request Broker: Architecture
and Specification Revision 2.0, July 1995, updated July 1996,
http://www.opengroup.org/openbrand/register/orm0.htm.

[37] H. Pedroso, L.M. Silva, J.G. Silva, Web-based metacomputing
with JET, in: Proceedings of the ACM 1997 PPoPP Workshop
on Java for Science and Engineering Computation, ACM,
June 1997.

[38] J.S. Plank, H. Casanova, M. Beck, J. Dongarra, Deploying
fault tolerance and task migration with NetSolve, Future
Gener. Comput. Syst. 15 (1999) 745–755.

[39] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker,
A Scalable Content Addressable Network, Technical Report
TR-00-010, Berkeley, CA, 2000.

[40] A. Rowstron, P. Druschel, Pastry: scalable, decentralized
object location, and routing for large-scale peer-to-peer
systems, Lecture Notes in Computer Science, 2001, p. 2218.

[41] T. Sandholm, J. Gawor, Globus Toolkit 3 Core—a grid service
container FrameWork, in: Globus Toolkit Core White Paper,
July 2003.http://www-unix.globus.org/toolkit/3.0/ogsa/docs/
gt3 core.pdf.

[42] L.F.G. Sarmenta, Volunteer computing, Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, USA, June
2001.

[43] L.F.G. Sarmenta, Sabotage-tolerance mechanisms for
volunteer computing systems, in: Proceedings of the ACM/
IEEE International Symposium on Cluster Computing and
the Grid (CCGrid’01), Brisbane, Australia, 15–18 May 2001.

[44] L.F.G. Sarmenta, S. Hirano, S.A. Ward, Towards Bayanihan:
builing an extensible framework for Volonteer Computing
using Java, in: Proceedings of the ACM Workshop on Java
for High-Performance Network Computing, 1998.

[45] S. Saroiu, P.K. Gummadi, S.D. Gribble, A measurement
study of peer-to-peer file sharing systems, in: Proceedings of
Multimedia Computing and Networking 2002 (MMCN’02),
San Jose, CA, January 2002.http://www.cite-seer.nj.nec.
com/saroiu02measurement.html.

[46] M. Sato, M. Hirano, Y. Tanaka, S. Sekiguchi, OmniRPC:
a grid RPC facility for cluster and global computing in
OpenMP, in: Springer (Ed.), Proceedings of the Workshop on
OpenMP Applications and Tools 2001, volume LNCS 2104,
West Lafayette, IN, July 2001, pp. 130–135.

[47] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U.
Nagashima, H. Takagi, Ninf: a network based information
library for global world-wide computing infrastructure,
in: Proceedings of the High-Performance Computing and
Networking, International Conference and Exhibition, HPCN
Europe, volume LNCS 1225, Vienna, Austria, Springer, April
1997, pp. 491–502.

[48] S.J. Sciutto, Aires: Air Showers Extended Simulation,
Department of Physics of the Universidad Nacional de La
Plata, Argentina, 1995.http://www.fisica.unlp.edu.ar/auger/
aires/.

[49] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,
H. Casanova, GridRPC: a remote procedure call API for
grid computing, in: Technical Report, University of Tennesse,
ICL-UT-02-06, June 2002.

[50] J. Shoch, J. Hupp, Computing practices: the ‘Worm’
programs—early experience with a distributed computation,
Comm. ACM 25 (3) (1982) 172–180.

[51] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra,
MPI: The Complete Reference, The MIT Press, 1996.
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html.

[52] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan,
Chord: A Scalable Peer-To-Peer Lookup Service for Internet
Applications, Technical Report TR-819, MIT, 2001.

[53] B.Y. Zhao, J.D. Kubiatowicz, A.D. Joseph, Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and
Routing, Technical Report UCB/CSD-01-1141, UC Berkeley,
April 2001.

Franck Cappello holds a Research Di-
rector position at INRIA, after having
spent 8 years as CNRS researcher. He
leads the Grand-Large project at IN-
RIA and the Cluster and Grid group
at LRI. He has authored more than 50
papers in the domains of High Perfor-
mance Programming, Desktop Grids and
Fault-tolerant MPI. He is editorial board
member of the “International Journal on

GRID Computing” and steering committee member of IEEE/ACM
CCGRID. He organizes annually the Global and Peer-to-Peer
Computing workshop. He leads the XtremWeb (Desktop Grid)
and MPICH-V (Fault-tolerant MPI) projects. He is currently in-
volved in two new projects: Grid eXplorer (a Grid Emulator) and
Grid’5000 (a Nation Wide Experimental Grid Testbed).

Samir Djilali is a PhD candidate in com-
puter science from Paris South University
(France). He received his MS in computer
science from Paris South University in
2001. He is a member of the Grand-Large
INRIA project. His work focuses on pro-
gramming models and fault tolerance for
large-scale distribute systems.

Gilles Fedak is a Post-Doctoral fellow
in the GRAIL Computer Science Lab-
oratory at the University of California
at San Diego. His research interests in-
clude Grid and Global Computing envi-
ronments. He was the main contributor
to the XtremWeb project. He received
his PhD in computer science from Paris
South University, France, in 2003.

http://subterfugue.org/
http://subterfugue.org/
http://www.opengroup.org/openbrand/register/orm0.htm
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/gt3_core.pdf
http://www-unix.globus.org/toolkit/3.0/ogsa/docs/gt3_core.pdf
http://www.cite-seer.nj.nec.com/saroiu02measurement.html
http://www.cite-seer.nj.nec.com/saroiu02measurement.html
http://www.fisica.unlp.edu.ar/auger/aires/
http://www.fisica.unlp.edu.ar/auger/aires/
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html


F. Cappello et al. / Future Generation Computer Systems 21 (2005) 417–437 437

Thomas Herault is an assistant professor
at the Paris South University (France). He
defended its PhD on the mending of tran-
sient failure in self-stabilizing systems in
2003, under the supervision of Professor
Joffroy Beauquier. He is a member of the
Grand-Large INRIA project and works
on fault-tolerant protocols in distributed
systems. He contributes to the MPICH-V
project of fault-tolerant MPI and to fault
tolerance for XtremWeb.

Frédéric Magniette received his PhD
from Paris South University, France, in
2003. He is currently a CNRS en-
gineer. His research interests include
self-stabilizing systems and security in
large-scale distributed systems.

Vincent Néri is a CNRS engineer at
LRI (Computer Science Laboratory) at
Paris South University. His research in-
terests include large-scale distributed sys-
tems. He is a major contributor of
XtremWeb project. He is a member of the
Grand-Large INRIA project. He received
his PhD in computer science from Paris
South University in 1995.

Oleg Lodygensky is an engineer in Com-
puting Science at LAL (a High Energy
Physics Laboratory of the CNRS IN2P3
Institute), Orsay, France, since 1994. .He
is also a PhD student (since 2001) at
LRI, Orsay, France, under the direction of
Franck Cappello. The aim of this thesis
is to evaluate the possibility of Desktop
Grid use among the High Energy Physics
Community, a highly involved communi-
ty in Grid (and in DataGrid, more specif-
ically).


	Computing on large-scale distributed systems: XtremWeb architecture, programming models, security, tests and convergence with grid
	Introduction
	Large-scale distributed systems
	Global Computing systems

	XtremWeb
	Services
	XtremWeb architecture
	Some key elements of XtremWeb implementation
	Deployment
	Communications
	Basic services
	XtremWeb services
	Coordinator architecture
	Worker architecture
	Client architecture



	Parallel programming API
	Concurrent RPCs
	SMPD through fault-tolerant MPI

	Security
	Sandboxes
	SBLSM
	SBLSM performance experiment

	Large-scale experiments using XtremWeb
	Understanding protein folding by mutations
	Understanding high-energy cosmic rays
	Testbed
	Evaluation

	Lessons learned from the perspective of interaction between GC and grid
	References


